Prof. Chenyun LUO's Homepage

Research Interests:

I’m interested in Partial differential equations. Specifically, I study free-boundary problems in fluid dynamics.

Academic Appointments:

2020-, Assistant Professor, Department of Mathematics, The Chinese University of Hong Kong
2017-2020, Assistant Professor (Non-tenure-track), Department of Mathematics, Vanderbilt University

Education:

2017 Ph.D. in Mathematics, Johns Hopkins University
2011 BA in Mathematics with Highest Honor, University of Rochester

(pre-)Publications:

  1. Hu, Z., Luo, C., & Yao, Y. (2024). Small scale creation for 2D free boundary Euler equations with surface tension. Annals of PDE, 10(2), 13. 19 pages.
  2. Luo, C., & Zhou, K. (2024). A Generalized Beale–Kato–Majda Breakdown Criterion for the Free-Boundary Problem in Euler Equations with Surface Tension. SIAM Journal on Mathematical Analysis, 56(1), 374-411. 38 pages.
  3. Luo, C., & Zhang, J. (2022). Compressible Gravity-Capillary Water Waves with Vorticity: Local Well-Posedness, Incompressible and Zero-Surface-Tension Limits. Preprint. https://arxiv.org/abs/2211.03600. 74 pages.
  4. Luo, C.,& Yu, H. (2022). Nematic Liquid Crystal Flows with Low Viscosity. Preprint.
  5. Gu, X., Luo, C., & Zhang, J. (2024). Local well-posedness of the free-boundary incompressible magnetohydrodynamics with surface tension. Journal de Mathématiques Pures et Appliquées, 182, 31-115. 85 pages.
  6. Gu, X., Luo, C., & Zhang, J. (2022). Zero surface tension limit of the free-boundary problem in incompressible magnetohydrodynamics. Nonlinearity, 35(12), 6349-6398. 50 pages.
  7. Luo, C., & Zhang, J. (2022). Local well-posedness for the motion of a compressible gravity water wave with vorticity. Journal of Differential Equations, 332, 333-403. 71 pages.
  8. Disconzi, M. M., Luo, C., Mazzone, G., & Speck, J. (2022). Rough sound waves in 3D compressible Euler flow with vorticity. Selecta Mathematica, 28(2), 41. 153 pages.
  9. Luo, C., & Zhang, J. (2021). A priori estimates for the incompressible free-boundary magnetohydrodynamics equations with surface tension. SIAM Journal on Mathematical Analysis, 53(2), 2595-2630. 36 pages.
  10. Disconzi, M. M., & Luo, C. (2020). On the incompressible limit for the compressible free-boundary Euler equations with surface tension in the case of a liquid. Archive for Rational Mechanics and Analysis, 237(2), 829-897. 69 pages.
  11. Ginsberg, D., Lindblad, H., & Luo, C. (2020). Local well-posedness for the motion of a compressible, self-gravitating liquid with free surface boundary. Archive for Rational Mechanics and Analysis, 236, 603-733. 131 pages.
  12. Luo, C., & Zhang, J. (2020). A regularity result for the incompressible magnetohydrodynamics equations with free surface boundary. Nonlinearity, 33(4), 1499-1527. 29 pages.
  13. Luo, C. (2018). On the motion of a compressible gravity water wave with vorticity. Annals of PDE, 4(2), 20. 71 pages.
  14. Lindblad, H., & Luo, C. (2018). A priori estimates for the compressible Euler equations for a liquid with free surface boundary and the incompressible limit. Communications on Pure and Applied Mathematics, 71(7), 1273-1333. 61 pages.
  15. Luo, C. (2017). On the Motion of the Free Surface of a Compressible Liquid. Ph.D. thesis.

Competitive Research Grants:

Awards:

Postdocs:

Current:

Dr. Liangchen ZOU

Past:

Dr. Kai ZHOU

Graduate Students:

Current Students:

Mr. Zelin DONG (Ph.D), Miss. Hetong WANG (Ph.D.), Mr. Hang YU (M.Phil)

Completed Students:

Dr. Kaihui LUO (Ph.D., graduated in 2025), Mr. Longhui XU (M.Phil, graduated in 2024).